ÇöÀçÀ§Ä¡ : Home > °úÇÐ/±â¼ú > °øÇÐ

 
Colloid Stability: The Role of Surface Forces - Part 1,2 (Vol. 1,2) (Àü2±Ç, Hardcover)
    ¡¤ ÁöÀºÀÌ | ¿Å±äÀÌ:Tharwat F. Tadros
    ¡¤ ÃâÆÇ»ç:Vch Verlagsgesellschaft Mbh
    ¡¤ ÃâÆdz⵵:2007
    ¡¤ Ã¥»óÅÂ:°ÅÀÇ »õÃ¥¼öÁØ / ¾çÀ庻 / 448,412ÂÊ / 172*245mm / ¾ð¾î : English / ISBN : 9783527314621(3527314628) 9783527315031(3527315039)
    ¡¤ ISBN:9783527314621
    ¡¤ ½ÃÁß°¡°Ý : ¿ø
    ¡¤ ÆǸŰ¡°Ý : ¿ø
    ¡¤ Æ÷ ÀÎ Æ® : Á¡
    ¡¤ ¼ö ·® : °³

Preface XIII
 List of Contributors XXV
 1 General Principles of Colloid Stability and the Role of Surface Forces 1
 Tharwat F. Tadros
 1.1 Introduction 2
 1.2 Electrostatic Stabilization (DLVO Theory) 2
 1.2.1 Van der Waals Attraction 2
 1.2.2 Double-layer Repulsion 4
 1.2.3 Total Energy of Interaction (DLVO Theory) 5
 1.2.4 Stability Ratio 7
 1.2.5 Extension of the DLVO Theory 10
 1.2.6 The Concept of Disjoining Pressure 10
 1.2.7 Direct Measurement of Interaction Forces 12
 1.3 Steric Stabilization 13
 1.3.1 Mixing Interaction, Gmix 14
 1.3.2 Elastic Interaction, Gel 16
 1.3.3 Total Energy of Interaction 17
 1.3.4 Criteria for Effective Steric Stabilization 19
 1.3.5 Flocculation of Sterically Stabilized Dispersions 19
 1.3.5.1 Weak Flocculation 19
 1.3.5.2 Strong (Incipient) Flocculation 20
 1.4 Depletion Flocculation 21
 References 22
 2 Thermodynamic Criterion of Spontaneous Dispersion 23
 Eugene D. Shchukin and Alexander V. Pertsov
 2.1 Introduction 23
 2.2 Work and Entropy of Dispersion 24
 2.3 Behavior of ¥ÄF(r) When v=Constant 27
 2.4 Behavior of ¥ÄF(n) When r= Constant 31
 2.5 Behavior of ¥ÄF(r) When n= Constant 35
 2.6 Effect of ¥ò, Effect of T 36
 2.7 Conclusion 39
 References 41
 3 Electrostatic Interactions Between Colloidal Particles ?nalytic Approximation 49
 Hiroyuki Ohshima
 3.1 Introduction 49
 3.2 An Electrical Double Layer Around a Colloidal Particle: the Poisson?oltzmann Equation 50
 3.3 Double-layer Interactions at Constant Surface Potential and at Constant Surface Charge Density 52
 3.4 Interaction Between Two Parallel Plates 54
 3.4.1 Low Potentials 54
 3.4.2 Moderate Potentials 56
 3.4.3 Linear Superposition Approximation 57
 3.4.4 Alternative Method of Linearization of the Poisson?oltzmann Equation 61
 3.5 Interaction Between Two Spheres 62
 3.5.1 Derjaguin's Approximation 62
 3.5.2 Curvature Correction to Derjaguiris Formula and HHF Formula 64
 3.5.3 Correction to the Sixth Power of Surface Potentials in HHF Formula 65
 3.5.4 Linear Superposition Approximation for Sphere?phere Interaction 66
 3.5.5 Exact Solution for Sphere?phere Interaction 67
 3.5.6 Interaction at Small Separations 69
 References 70
 4 Role of Surface Forces on the Formation and Stability of Fractal Structures 73
 S?er Peker
 4.1 Introduction 73
 4.2 Fractals as a Special Case of Aggregation 73
 4.3 Kinetics of Cluster Formation 76
 4.4 Surface Forces Effective on the Collision Efficiency Factor 80
 4.5 Effect of Surface Forces on the Fractal Dimension 84
 4.5.1 Effect of Stability Ratio on Fractal Dimension 84
 4.5.2 Effect of Polyelectrolytes on the Fractal Dimension 86
 4.5.3 Effect of Fragmentation and Restructuring on the Fractal Dimension 89
 4.5.4 Effect of Specific Ions on the Fractal Dimension 91
 4.5.5 Effect of the Shape Factor of Primary Particles on the Fractal Dimension 91
 4.5.6 Effect of Multilevel Fractal Structures on the Fractal Dimension 92
 4.6 Modeling of Fractal Aggregates 93
 4.7 Conclusion 94
 References 94
 5 Hydrophobic Attraction in the Light of Thin-Film Thermodynamics 99
 Jan Christer Eriksson and Roe-Hoan Yoon
 5.1 Introduction 99
 5.2 The Molecular Organization of Water at Interfaces 102
 5.3 Thermodynamic Aspects of Surface Force Measurements 103
 5.4 The Ideal Hydrophobic Surface Versus Real Hydrophobic Surfaces 106
 5.5 Hydrophobic Attraction Forces Under Ideal Conditions 109
 5.6 Bubble Attachment and Cavity Formation at Hydrophobic Surfaces 115
 5.7 Electrostatic Correlation Forces 116
 5.8 Surface Force Data Supporting the Water Structure Mechanism 117
 5.9 The Effect of Solutes 124
 5.10 Conclusion 126
 References 130
 6 Long-range Surface Forces in Molecular Liquids: Trends in the Theory 133
 Ludmila B. Boinovich and Alexandre M. Emelyanenko
 6.1 Introduction 133
 6.2 Molecular Forces 134
 6.3 Ion?lectrostatic Interactions 138
 6.4 Further Development of the Molecular Forces Theory 140
 6.5 Amendment of the Theory of Ion?lectrostatic Forces 141
 6.6 Electrostatic Interactions in Non-polar Media 145
 6.7 Forces Due to Modified Structure of Liquid in the Interlayer 146
 6.7.1 Treatment of Liquid Within a Continuum Approach 146
 6.7.2 Accounting for a Discreteness of Liquid Structure 149
 6.7.3 Phonon Mechanism of Long-range Forces 150
 6.8 Forces Due to High Molecular Weight Polymers and Chain Surfactants 153
 6.9 Conclusions 154
 References 155
 7 Hydrophobic Forces in Foam Films 161
 Roe-Hoan Yoon and Liguang Wang
 7.1 Introduction 161
 7.2 Foam Films with Ionic Surfactants 163
 7.2.1 Equilibrium Film Thickness 163
 7.2.2 Disjoining Pressure Isotherm 166
 7.2.3 Kinetics of Film Thinning 168
 7.2.4 Critical Rupture Thickness 171
 7.3 Foam Films with Non-ionic Surfactants 173
 7.3.1 Kinetics of Film Thinning 173
 7.3.2 Critical Rupture Thickness 178
 7.4 Possible Origins of Hydrophobic Force 179
 7.4.1 Adsorption 179
 7.4.2 Structure 181
 7.4.3 Long-range Force 182
 7.5 Implications for Flotation 184
 7.6 Conclusion 185
 References 185
 8 Surfactant Nanostructures in Foam Films 187
 Elena Mileva and Plamen Tchoukov
 8.1 Background 188
 8.2 Drainage of Microscopic Foam Films 190
 8.2.1 Black Patterns 192
 8.2.2 Drainage Characteristics 194
 8.3 Understanding the Experimental Results 199
 8.3.1 Premicellar Concept 201
 8.3.2 Surface Forces in the Films and Surfactant Self-assemblies 201
 8.3.3 Foam Film Hydrodynamics 203
 8.4 Conclusion 205
 References 205
 9 Nanoparticles in Confined Structures: Formation and Application 207
 Alexander Kamyshny and Shlomo Magdassi
 9.1 Introduction 207
 9.2 Synthesis of Nanoparticles in Nanoreactors 210
 9.2.1 Micelles and Emulsions 210
 9.2.1.1 Reverse Micelles and W/O Microemulsions 210
 9.2.1.2 W/SCF Microemulsions 215
 9.2.1.3 Micelles of Amphiphilic Block Copolymers 216
 9.2.1.4 O/W Emulsions and Microemulsions 217
 9.2.1.5 Miniemulsions 218
 9.2.2 Dendrimers 219
 9.2.3 Porous Matrices 220
 9.2.4 Polyelectrolyte Micro- and Nanocapsules 221
 9.2.5 Liquid Crystals 222
 9.3 Applications 224
 9.3.1 Catalysis 224
 9.3.2 Nanoparticles in Drug Delivery 225
 9.3.3 Patterning of Organic Nanoparticles by Ink-jet Printing 225
 References 226
 10 Colloid Stability Using Polymeric Surfactants 235
 Tharwat F. Tadros
 10.1 Introduction 236
 10.2 General Classification of Polymeric Surfactants 237
 10.3 Solution Properties of Polymeric Surfactants 238
 10.4 Adsorption and Conformation of Polymeric Surfactants at Interfaces 242
 10.5 Stabilization of Solid?iquid Dispersions Using Graft Copolymers 245
 10.6 Emulsion Polymerization Using Graft Copolymer (INUTEC SP1) and Stability of the Resulting Latex 250
 10.7 Emulsions Stabilized Using Polymeric Surfactants 253
 10.7.1 Oil-in-Water Emulsions Stabilized Using INUTEC SP1 253
 10.7.2 Water-in-Oil (W/O) Emulsions Stabilized with Arlacel P135 255
 10.8 Stabilization of Nano-emulsions Using INUTEC SP1 257
 10.9 Stabilization of Multiple Emulsions Using Polymeric Surfactants 260
 References 262
 11 Foam Films, Foams and Surface Rheology of Non-ionic Surfactants: Amphiphilic Block Copolymers Compared with Low Molecular Weight Surfactants 263
 Cosima Stubenrauch and Brita Rippner Blomqvist
 11.1 Introduction 263
 11.2 Disjoining Pressure in Foam Films 266
 11.2.1 DLVO and Non-DLVO Contributions 266
 11.2.1.1 DLVO Interactions 267
 11.2.1.2 Steric Interactions 269
 11.2.2 Foam Films Stabilized by Low Molecular Weight Surfactants 270
 11.2.2.1 Influence of the Surfactant Concentration 270
 11.2.1.2 Influence of the Surfactant Structure 273
 11.2.3 Foam Films Stabilized by Amphiphilic Block Copolymers 275
 11.2.3.1 Influence of the Electrolyte Concentration 278
 11.2.3.2 Influence of the Block Copolymer Concentration 278
 11.2.3.3 Influence of the Block Copolymer Structure 279
 11.3 Drainage and Stability of Foams 280
 11.3.1 Correlation Between Foams and Foam Films 280
 11.3.2 Drainage and Stability of Foams Under Reduced Pressure 284
 11.3.2.1 Foam Drainage 285
 11.3.2.2 Foam Stability 286
 11.3.3 Drainage and Stability of Foams Under Gravity 289
 11.4 Surface Rheology of Surfactant Monolayers 292
 11.4.1 Surface Rheology and Film Stability 292
 11.4.2 Surface Rheology of Low Molecular Weight Surfactants 296
 11.4.3 Surface Rheology of Amphiphilic Block Copolymers 299
 11.5 Conclusions 303
 References 304
 12 Effect of the Intrinsic Compressibility on the Dilational Rheology of Adsorption Layers of Surfactants, Proteins and Their Mixtures 307
 Valentin B. Fainerman, Volodymyr I. Kovalchuk, Martin E. Leser, and Reinhard Miller
 12.1 Introduction 307
 12.2 Dilational Elasticity of Surfactant Adsorption Layers 309
 12.2.1 Two-dimensional Molecular Compressibility 309
 12.2.2 Models for Non-ionic Surfactants 310
 12.2.3 Selected Experimental Results 314
 12.2.4 Ionic Surfactants 317
 12.3 Elasticity of Protein Adsorption Layers 320
 12.4 Rheology of Mixed Protein/Surfactant Layers 324
 12.5 Conclusions 330
 References 332
 13 Metastability and Lability in Surface Phase Transitions: Surface Forces and Line Tension Effects 335
 Borislav V. Toshev
 13.1 Introduction 335
 13.2 Omega Potential Thermodynamic Formalism 336
 13.3 Metastability and Lability in Homogeneous Condensation 338
 13.4 Metastability and Lability in Heterogeneous Condensation 341
 13.5 Origin and Properties of Line Tension 344
 13.6 Historical Context and Conclusion 350
 References 351
 14 Structure and Stability of Black Foam Films from Phospholipids 353
 Mickael Nedyalkov
 14.1 Black Films 354
 14.2 Phospholipid Films 354
 14.3 Methods 356
 14.4 Experimental 356
 14.5 Modeling of the Phospholipidic Bilayers 357
 14.6 Results and Discussion 358
 14.6.1 Phospholipid Films 358
 14.6.1.1 DMPC, DOPC, DPPE, DOTAB and DMPG Films 358
 14.6.1.2 Stability of Phospholipid Films 360
 14.6.1.3 Influence of the Headgroup 361
 14.6.2 Surfactant?rotein Interaction in NBF 362
 14.6.2.1 Introduction 362
 14.6.2.2 Films of Surfactant and BSA 363
 14.6.3 Interactions in Films of Phospholipids and Protein Mixtures 365
 14.6.3.1 Films of DMPC/DMPG Mixture Without Protein 365
 14.6.3.2 Films of DMPC/DMPG Mixture With Protein BSA 368
 14.6.3.3 Films of DMPC/DMPG Mixture With Protein Lysozyme 370
 14.6.4 Action of Amphiphilic Cyclodextrins in Phospholipid Films 374
 14.6.4.1 Introduction 374
 14.6.4.2 Mixed DMPC/chol-DIMEB Films 375
 14.6.4.3 Mixed DMPC/chol-DIMEB Films Including Dosulepine Guest Molecules 377
 14.7 Conclusion 379
 References 380
 15 Phospholipid Foam Films: Types, Properties and Applications 383
 Zdravko I. Lalchev
 15.1 Introduction 383
 15.2 Formation and Types of PFFs 384
 15.2.1 Probability of Formation of PFFs 386
 15.2.2 Dependences of the Threshold Concentration (Ct) on Temperature and Lipid Phase State 387
 15.3 Properties of PFFs 389
 15.3.1 Molecular Lateral Diffusion in PFFs 390
 15.3.1.1 Dependence of the Diffusion Coefficient (D) on the Type and Thickness of PFFs 390
 15.3.1.2 Dependence of Diffusion Coefficient (D) on the Phospholipid Phase State and Nature of Molecular Chains and Polar Headgroups 392
 15.3.2 Molecular Interactions of PFFs with Surface-active Agents 394
 15.3.3 Recently Developed Techniques for Studying the Properties of PFFs 397
 15.4 Some Applications of PFFs 399
 15.4.1 Lipid?rotein Foam Film (LPFF) as a Model System for Studying Lipid?rotein Interactions at Interfaces 400
 15.4.2 LPFF as a Model System for Studying Alveolar Surface and Structure 401
 15.4.3 LPFF as a Model System for Studying Lung Maturity and Exogenous Surfactant Preparations 402
 References 405
 Subject Index 409



Wetting of Surfaces and Interfaces: a Conceptual Equilibrium Thermodynamic ApproachSurface Forces and Wetting Phenomena
 Investigation of Plateau Border Profile Shape with Flow of Surfactant Solution Through Foam Under Constant Pressure Drop Using the FPDT Method
 Physical Chemistry of Wetting Phenomena
 The Intrinsic Charge at the Hydrophobe/Water Interface
 Surface Forces in Wetting Phenomena in Fluid Systems
 Aggregation of Microgel Particles
 Progress in Structural Transformation in Lyotropic Liquid Crystals
 Particle Deposition as a Tool for Studying Hetero-interactions
 Recent Developments in Dilational Viscoelasticity of Surfactant Layers
 Rapid Brownian and Gravitational Coagulation


¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ ´äº¯
ÀÌ »óÇ°¿¡ ´ëÇÑ Áú¹®ÀÌ ¾ÆÁ÷ ¾ø½À´Ï´Ù.
±Ã±ÝÇϽŠ»çÇ×Àº ÀÌ°÷¿¡ Áú¹®ÇÏ¿© ÁֽʽÿÀ.
 
* ÀÌ »óÇ°¿¡ ´ëÇÑ ±Ã±ÝÇÑ »çÇ×ÀÌ ÀÖÀ¸½Å ºÐÀº Áú¹®ÇØ ÁֽʽÿÀ.
ȸ»ç¼Ò°³ | ¼­ºñ½ºÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸ Ãë±Þ¹æħ
¼­¿ï½Ã °ü¾Ç±¸ Çà¿îµ¿ 1686-21 È£Àüºôµù ÁöÇÏ1Ãþ (ÁöÇÏö2È£¼± ³«¼º´ë¿ª 5,6¹ø Ãⱸ »çÀÌ) / ÀüÈ­ : 02-811-1256 / Æѽº : 02-811-1256 / ¿î¿µÀÚ : ´Þ¸¶ / °³ÀÎÁ¤º¸°ü¸®Ã¥ÀÓÀÚ : ÀÓ¿µÅÃ
»ç¾÷ÀÚ µî·Ï¹øÈ£ : 108-91-53191 / ´ëÇ¥ : ÀÓ¿µÅà / Åë½ÅÆǸž÷½Å°í¹øÈ£ : Á¦ OO±¸ - 123È£
Copyright © 2009 ´Þ¸¶¼­Á¡. All Rights Reserved.