ÇöÀçÀ§Ä¡ : Home > ´ëÇÐÀü°ø¼­Àû > ÀÚ¿¬°úÇÐ/¼öÇÐ

 
Physical Chemistry: A Molecular Approach (Hardcover)
    ¡¤ ÁöÀºÀÌ | ¿Å±äÀÌ:Donald A. McQuarrie, John D. Simon
    ¡¤ ÃâÆÇ»ç:University Science Books
    ¡¤ ÃâÆdz⵵:1997
    ¡¤ Ã¥»óÅÂ:»õÃ¥¼öÁØ / ¾çÀ庻 / 1270ÂÊ | 267*184mm | ¾ð¾î : English | ±¹°¡ : ¹Ì±¹ | 1950g | ISBN : 9780935702996(0935702997)
    ¡¤ ISBN:0935702997
    ¡¤ ½ÃÁß°¡°Ý : ¿ø
    ¡¤ ÆǸŰ¡°Ý : ¿ø
    ¡¤ Æ÷ ÀÎ Æ® : Á¡
    ¡¤ ¼ö ·® : °³

Unlike most physical chemistry texts, modern physical chemistry research is based on quantum mechanics, and this state-of-the-art approach is the one adopted by McQuarrie and Simon. Quantum theory is introduced at the outset, and the molecular viewpoint of quantum chemistry informs the authors' investigation of physical chemistry's other main topic ares - thermodynamics and chemical kinetics. The book also includes examples of applications in NMR spectroscopy, lasers, photochemistry, gas-reaction dynamics and other current research topics. "At last there is a book written from a modern perspective! A real winner!" George C. Fields, Lake Forest College


Preface xvii (6)
 To the Student xvii (2)
 To the Instructor xix (4)
 Acknowledgment xxiii
 CHAPTER 1 / The Dawn of the Quantum Theory 1 (38)
 1-1. Blackbody Radiation Could Not Be 2 (2)
 Explained by Classical Physics
 1-2. Planck Used a Quantum Hypothesis to 4 (3)
 Derive the Blackbody Radiation Law
 1-3. Einstein Explained the Photoelectric 7 (3)
 Effect with a Quantum Hypothesis
 1-4. The Hydrogen Atomic Spectrum Consists 10 (3)
 of Several Series of Lines
 1-5. The Rydberg Formula Accounts for All 13 (2)
 the Lines in the Hydrogen Atomic Spectrum
 1-6. Louis de Broglie Postulated That 15 (1)
 Matter Has Wavelike Properties
 1-7. de Broglie Waves Are Observed 16 (2)
 Experimentally
 1-8. The Bohr Theory of the Hydrogen Atom 18 (5)
 Can Be Used to Derive the Rydberg Formula
 1-9. The Heisenberg Uncertainty Principle 23 (2)
 States That the Position and the Momentum
 of a Particle Cannot Be Specified
 Simultaneously with Unlimited Precision
 Problems 25 (6)
 MATHCHAPTER A / Complex Numbers 31 (4)
 Problems 35 (4)
 CHAPTER 2 / The Classical Wave Equation 39 (34)
 2-1. The One-Dimensional Wave Equation 39 (1)
 Describes the Motion of a Vibrating String
 2-2. The Wave Equation Can Be Solved by 40 (4)
 the Method of Separation of Variables
 2-3. Some Differential Equations Have 44 (2)
 Oscillatory Solutions
 2-4. The General Solution to the Wave 46 (3)
 Equation Is a Superposition of Normal Modes
 2-5. A Vibrating Membrane Is Described by 49 (5)
 a Two-Dimensional Wave Equation
 Problems 54 (9)
 MATHCHAPTER B / Probability and Statistics 63 (7)
 Problems 70 (3)
 CHAPTER 3 / The Schrodinger Equation and a 73 (42)
 Particle In a Box
 3-1. The Schrodinger Equation Is the 73 (2)
 Equation for Finding the Wave Function of a
 Particle
 3-2. Classical-Mechanical Quantities Are 75 (2)
 Represented by Linear Operators in Quantum
 Mechanics
 3-3. The Schrodinger Equation Can Be 77 (3)
 Formulated As an Eigenvalue Problem
 3-4. Wave Functions Have a Probabilistic 80 (1)
 Interpretation
 3-5. The Energy of a Particle in a Box Is 81 (3)
 Quantized
 3-6. Wave Functions Must Be Normalized 84 (2)
 3-7. The Average Momentum of a Particle in 86 (2)
 a Box Is Zero
 3-8. The Uncertainty Principle Says That 88 (2)
 XXX(p) XXX(x) > h/2
 3-9. The Problem of a Particle in a 90 (6)
 Three-Dimensional Box Is a Simple Extension
 of the One-Dimensional Case
 Problems 96 (9)
 MATHCHAPTER C / Vectors 105 (8)
 Problems 113 (2)
 CHAPTER 4 / Some Postulates and General 115 (42)
 Principles of Quantum Mechanics
 4-1. The State of a System Is Completely 115 (3)
 Specified by Its Wave Function
 4-2. Quantum-Mechanical Operators 118 (4)
 Represent Classical-Mechanical Variables
 4-3. Observable Quantities Must Be 122 (3)
 Eigenvalues of Quantum Mechanical Operators
 4-4. The Time Dependence of Wave Functions 125 (2)
 Is Governed by the Time-Dependent
 Schrodinger Equation
 4-5. The Eigenfunctions of Quantum 127 (4)
 Mechanical Operators Are Orthogonal
 4-6. The Physical Quantities Corresponding 131 (3)
 to Operators That Commute Can Be Measured
 Simultaneously to Any Precision
 Problems 134 (19)
 MATHCHAPTER D / Spherical Coordinates 147 (6)
 Problems 153 (4)
 CHAPTER 5 / The Harmonic Oscillator and the 157 (34)
 Rigid Rotator: Two Spectroscopic Models
 5-1. A Harmonic Oscillator Obeys Hooke's 157 (4)
 Law
 5-2. The Equation for a 161 (2)
 Harmonic-Oscillator Model of a Diatomic
 Molecule Contains the Reduced Mass of the
 Molecule
 5-3. The Harmonic-Oscillator Approximation 163 (3)
 Results from the Expansion of an
 Internuclear Potential Around Its Minimum
 5-4. The Energy Levels of a 166 (1)
 Quantum-Mechanical Harmonic Oscillator Are
 E(v) = hw(v + XXX) with v=0, 1, 2, ...
 5-5. The Harmonic Oscillator Accounts for 167 (2)
 the Infrared Spectrum of a Diatomic Molecule
 5-6. The Harmonic-Oscillator Wave 169 (3)
 Functions Involve Hermite Polynomials
 5-7. Hermite Polynomials Are Either Even 172 (1)
 or Odd Functions
 5-8. The Energy Levels of a Rigid Rotator 173 (4)
 Are E = h(2)J(J+1)/21
 5-9. The Rigid Rotator Is a Model for a 177 (2)
 Rotating Diatomic Molecule
 Problems 179 (12)
 CHAPTER 6 / The Hydrogen Atom 191 (50)
 6-1. The Schrodinger Equation for the 191 (2)
 Hydrogen Atom Can Be Solved Exactly
 6-2. The Wave Functions of a Rigid Rotator 193 (7)
 Are Called Spherical Harmonics
 6-3. The Precise Values of the Three 200 (6)
 Components of Angular Momentum Cannot Be
 Measured Simultaneously
 6-4. Hydrogen Atomic Orbitals Depend upon 206 (3)
 Three Quantum Numbers
 6-5. s Orbitals Are Spherically Symmetric 209 (4)
 6-6. There Are Three p Orbitals for Each 213 (6)
 Value of the Principal Quantum Number, n
 XXX 2
 6-7. The Schrodinger Equation for the 219 (1)
 Helium Atom Cannot Be Solved Exactly
 Problems 220 (11)
 MATHCHAPTER E / Determinants 231 (7)
 Problems 238 (3)
 CHAPTER 7 / Approximation Methods 241 (34)
 7-1. The Variational Method Provides an 241 (8)
 Upper Bound to the Ground-State Energy of a
 System
 7-2. A Trial Function That Depends 249 (7)
 Linearly on the Variational Parameters
 Leads to a Secular Determinant
 7-3. Trial Functions Can Be Linear 256 (1)
 Combinations of Functions That Also Contain
 Variational Parameters
 7-4. Perturbation Theory Expresses the 257 (4)
 Solution to One Problem in Terms of Another
 Problem Solved Previously
 Problems 261 (14)
 CHAPTER 8 / Multielectron Atoms 275 (48)
 8-1. Atomic and Molecular Calculations Are 275 (3)
 Expressed in Atomic Units
 8-2. Both Perturbation Theory and the 278 (4)
 Variational Method Can Yield Excellent
 Results for Helium
 8-3. Hartree-Fock Equations Are Solved by 282 (2)
 the Self-Consistent Field Method
 8-4. An Electron Has an Intrinsic Spin 284 (1)
 Angular Momentum
 8-5. Wave Function Must Be Antisymmetric 285 (3)
 in the Interchange of Any Two Electrons
 8-6. Antisymmetric Wave Functions Can Be 288 (2)
 Represented by Slater Determinants
 8-7. Hartree-Fock Calculations Give Good 290 (2)
 Agreement with Experimental Data
 8-8. A Term Symbol Gives a Detailed 292 (4)
 Description of an Electron Configuration
 8-9. The Allowed Values of J are L+S, 296 (5)
 L+S-1, ..., |L-S|
 8-10. Hund's Rules Are Used to Determine 301 (1)
 the Term Symbol of the Ground Electronic
 State
 8-11. Atomic Term Symbols Are Used to 302 (6)
 Describe Atomic Spectra
 Problems 308 (15)
 CHAPTER 9 / The Chemical Bond: Diatomic 323 (48)
 Molecules
 9-1. The Born-Oppenheimer Approximation 323 (2)
 Simplifies the Schrodinger Equation for
 Molecules
 9-2. H(+)(2) Is the Prototypical Species 325 (2)
 of Molecular-Orbital Theory
 9-3. The Overlap Integral Is a 327 (2)
 Quantitative Measure of the Overlap of
 Atomic Orbitals Situated on Different Atoms
 9-4. The Stability of a Chemical Bond Is a 329 (4)
 Quantum-Mechanical Effect
 9-5. The Simplest Molecular Orbital 333 (3)
 Treatment of H(+)(2) Yields a Bonding
 Orbital and an Antibonding Orbital
 9-6. A Simple Molecular-Orbital Treatment 336 (1)
 of H(2) Places Both Electrons in a Bonding
 Orbital
 9-7. Molecular Orbitals Can Be Ordered 336 (5)
 According to Their Energies
 9-8. Molecular-Orbital Theory Predicts 341 (1)
 That a Stable Diatomic Helium Molecule Does
 Not Exist
 9-9. Electrons Are Placed into Molecular 342 (2)
 Orbitals in Accord with the Pauli Exclusion
 Principle
 9-10. Molecular-Orbital Theory Correctly 344 (2)
 Predicts That Oxygen Molecules Are
 Paramagnetic
 9-11. Photoelectron Spectra Support the 346 (1)
 Existence of Molecular Orbitals
 9-12. Molecular-Orbital Theory Also 346 (3)
 Applies to Heteronuclear Diatomic Molecules
 9-13. An SCF-LCAO-MO Wave Function Is a 349 (6)
 Molecular Orbital Formed from a Linear
 Combination of Atomic Orbitals and Whose
 Coefficients Are Determined
 Self-Consistently
 9-14. Electronic States of Molecules Are 355 (3)
 Designated by Molecular Term Symbols
 9-15. Molecular Term Symbols Designate the 358 (2)
 Symmetry Properties of Molecular Wave
 Functions
 9-16. Most Molecules Have Excited 360 (2)
 Electronic States
 Problems 362 (9)
 CHAPTER 10 / Bonding In Polyatomic Molecules 371 (40)
 10-1. Hybrid Orbitals Account for 371 (7)
 Molecular Shape
 10-2. Different Hybrid Orbitals Are Used 378 (3)
 for the Bonding Electrons and the Lone Pair
 Electrons in Water
 10-3. Why is BeH(2) Linear and H(2)O Bent? 381 (6)
 10-4. Photoelectron Spectroscopy Can Be 387 (3)
 Used to Study Molecular Orbitals
 10-5. Conjugated Hydrocarbons and Aromatic 390 (3)
 Hydrocarbons Can Be Treated by a
 XXX-Electron Approximation
 10-6. Butadiene Is Stabilized by a 393 (6)
 Delocalization Energy
 Problems 399 (12)
 CHAPTER 11 / Computational Quantum Chemistry 411 (42)
 11-1. Gaussian Basis Sets Are Often Used 411 (6)
 in Modern Computational Chemistry
 11-2. Extended Basis Sets Account 417 (5)
 Accurately for the Size and Shape of
 Molecular Charge Distributions
 11-3. Asterisks in the Designation of a 422 (3)
 Basis Set Denote Orbital Polarization Terms
 11-4. The Ground-State Energy of H(2) can 425 (2)
 be Calculated Essentially Exactly
 11-5. Gaussian 94 Calculations Provide 427 (7)
 Accurate Information About Molecules
 Problems 434 (7)
 MATHCHAPTER F / Matrices 441 (7)
 Problems 448 (5)
 CHAPTER 12 / Group Theory: The Exploitation 453 (42)
 of Symmetry
 12-1. The Exploitation of the Symmetry of 453 (2)
 a Molecule Can Be Used to Significantly
 Simplify Numerical Calculations
 12-2. The Symmetry of Molecules Can Be 455 (5)
 Described by a Set of Symmetry Elements
 12-3. The Symmetry Operations of a 460 (4)
 Molecule Form a Group
 12-4. Symmetry Operations Can Be 464 (4)
 Represented by Matrices
 12-5. The C(3v) Point Group Has a 468 (3)
 Two-Dimensional Irreducible Representation
 12-6. The Most Important Summary of the 471 (3)
 Properties of a Point Group Is Its
 Character Table
 12-7. Several Mathematical Relations 474 (6)
 Involve the Characters of Irreducible
 Representations
 12-8. We Use Symmetry Arguments to Predict 480 (4)
 Which Elements in a Secular Determinant
 Equal Zero
 12-9. Generating Operators Are Used to 484 (5)
 Find Linear Combinations of Atomic Orbitals
 That Are Bases for Irreducible
 Representations
 Problems 489 (6)
 CHAPTER 13 / Molecular Spectroscopy 495 (52)
 13-1. Different Regions of the 495 (2)
 Electromagnetic Spectrum Are Used to
 Investigate Different Molecular Processes
 13-2. Rotational Transitions Accompany 497 (4)
 Vibrational Transitions
 13-3. Vibration-Rotation Interaction 501 (2)
 Accounts for the Unequal Spacing of the
 Lines in the P and R Branches of a
 Vibration-Rotation Spectrum
 13-4. The Lines in a Pure Rotational 503 (1)
 Spectrum Are Not Equally Spaced
 13-5. Overtones Are Observed in 504 (3)
 Vibrational Spectra
 13-6. Electronic Spectra Contain 507 (4)
 Electronic, Vibrational, and Rotational
 Information
 13-7. The Franck-Condon Principle Predicts 511 (3)
 the Relative Intensities of Vibronic
 Transitions
 13-8. The Rotational Spectrum of a 514 (4)
 Polyatomic Molecule Depends Upon the
 Principal Moments of Inertia of the Molecule
 13-9. The Vibrations of Polyatomic 518 (5)
 Molecules Are Represented by Normal
 Coordinates
 13-10. Normal Coordinates Belong to 523 (4)
 Irreducible Representations of Molecular
 Point Groups
 13-11. Selection Rules Are Derived from 527 (4)
 Time-Dependent Perturbation Theory
 13-12. The Selection Rule in the Rigid 531 (2)
 Rotator Approximation Is XXXJ = XXX1
 13-13. The Harmonic-Oscillator Selection 533 (2)
 Rule Is XXXv = XXX1
 13-14. Group Theory Is Used to Determine 535 (2)
 the Infrared Activity of Normal Coordinate
 Vibrations
 Problems 537 (10)
 CHAPTER 14 / Nuclear Magnetic Resonance 547 (44)
 Spectroscopy
 14-1. Nuclei Have Intrinsic Spin Angular 548 (2)
 Momenta
 14-2. Magnetic Moments Interact with 550 (4)
 Magnetic Fields
 14-3. Proton NMR Spectrometers Operate at 554 (2)
 Frequencies Between 60 MHz and 750 MHz
 14-4. The Magnetic Field Acting upon 556 (4)
 Nuclei in Molecules Is Shielded
 14-5. Chemical Shifts Depend upon the 560 (2)
 Chemical Environment of the Nucleus
 14-6. Spin-Spin Coupling Can Lead to 562 (8)
 Multiplets in NMR Spectra
 14-7. Spin-Spin Coupling Between 570 (3)
 Chemically Equivalent Protons Is Not
 Observed
 14-8. The n + 1 Rule Applies Only to 573 (3)
 First-Order Spectra
 14-9. Second-Order Spectra Can Be 576 (9)
 Calculated Exactly Using the Variational
 Method
 Problems 585 (6)
 CHAPTER 15 / Lasers, Laser Spectroscopy, and 591 (46)
 Photochemistry
 15-1. Electronically Excited Molecules Can 592 (3)
 Relax by a Number of Processes
 15-2. The Dynamics of Spectroscopic 595 (6)
 Transitions Between the Electronic States
 of Atoms Can Be Modeled by Rate Equations
 15-3. A Two-Level System Cannot Achieve a 601 (2)
 Population Inversion
 15-4. Population Inversion Can Be Achieved 603 (1)
 in a Three-Level System
 15-5. What Is Inside a Laser? 604 (5)
 15-6. The Helium-Neon Laser is an 609 (4)
 Electrical-Discharge Pumped,
 Continuous-Wave, Gas-Phase Laser
 15-7. High-Resolution Laser Spectroscopy 613 (1)
 Can Resolve Absorption Lines That Cannot Be
 Distinguished by Conventional Spectrometers
 15-8. Pulsed Lasers Can Be Used to Measure 614 (6)
 the Dynamics of Photochemical Processes
 Problems 620 (7)
 MATHCHAPTER G / Numerical Methods 627 (7)
 Problems 634 (3)
 CHAPTER 16 / The Properties of Gases 637 (46)
 16-1. All Gases Behave Ideally If They Are 637 (5)
 Sufficiently Dilute
 16-2. The van der Waals Equation and the 642 (6)
 Redlich-Kwong Equation Are Examples of
 Two-Parameter Equations of State
 16-3. A Cubic Equation of State Can 648 (7)
 Describe Both the Gaseous and Liquid States
 16-4. The van der Waals Equation and the 655 (3)
 Redlich-Kwong Equation Obey the Law of
 Corresponding States
 16-5. Second Virial Coefficients Can Be 658 (7)
 Used to Determine Intermolecular Potentials
 16-6. London Dispersion Forces Are Often 665 (5)
 the Largest Contribution to the r(-6) Term
 in the Lennard-Jones Potential
 16-7. The van der Waals Constants Can Be 670 (4)
 Written in Terms of Molecular Parameters
 Problems 674 (9)
 MATHCHAPTER H / Partial Differentiation 683 (6)
 Problems 689 (4)
 CHAPTER 17 / The Boltzmann Factor and 693 (38)
 Partition Functions
 17-1. The Boltzmann Factor Is One of the 694 (2)
 Most Important Quantities in the Physical
 Sciences
 17-2. The Probability That a System in an 696 (2)
 Ensemble Is in the State j with Energy
 E(j)(N, V) Is Proportional to
 e(-E(j)(N,V)/k(B)(T)
 17-3. We Postulate That the Average 698 (4)
 Ensemble Energy Is Equal to the Observed
 Energy of a System
 17-4. The Heat Capacity at Constant Volume 702 (2)
 Is the Temperature Derivative of the
 Average Energy
 17-5. We Can Express the Pressure in Terms 704 (3)
 of a Partition Function
 17-6. The Partition Function of a System 707 (1)
 of Independent, Distinguishable Molecules
 Is the Product of Molecular Partition
 Functions
 17-7. The Partition Function of a System 708 (5)
 of Independent, Indistinguishable Atoms or
 Molecules Can Usually Be Written as
 [q(V,T)](N) / N!
 17-8. A Molecular Partition Function Can 713 (3)
 Be Decomposed into Partition Functions for
 Each Degree of Freedom
 Problems 716 (7)
 MATHCHAPTER I / Series and Limits 723 (5)
 Problems 728 (3)
 CHAPTER 18 / Partition Functions and Ideal 731 (34)
 Gases
 18-1. The Translational Partition Function 731 (2)
 of an Atom in a Monatomic Ideal Gas Is
 (2XXXmk(B)T/h(2))(3/2)V
 18-2. Most Atoms Are in the Ground 733 (4)
 Electronic State at Room Temperature
 18-3. The Energy of a Diatomic Molecule 737 (3)
 Can Be Approximated as a Sum of Separate
 Terms
 18-4. Most Molecules Are in the Ground 740 (3)
 Vibrational State at Room Temperature
 18-5. Most Molecules Are in Excited 743 (3)
 Rotational States at Ordinary Temperatures
 18-6. Rotational Partition Functions 746 (3)
 Contain a Symmetry Number
 18-7. The Vibrational Partition Function 749 (3)
 of a Polyatomic Molecule Is a Product of
 Harmonic Oscillator Partition Functions for
 Each Normal Coordinate
 18-8. The Form of the Rotational Partition 752 (2)
 Function of a Polyatomic Molecule Depends
 upon the Shape of the Molecule
 18-9. Calculated Molar Heat Capacities Are 754 (3)
 in Very Good Agreement with Experimental
 Data
 Problems 757 (8)
 CHAPTER 19 / The First Law of Thermodynamics 765 (52)
 19-1. A Common Type of Work is 766 (3)
 Pressure-Volume Work
 19-2. Work and Heat Are Not State 769 (4)
 Functions, but Energy Is a State Function
 19-3. The First Law of Thermodynamics Says 773 (1)
 the Energy Is a State Function
 19-4. An Adiabatic Process Is a Process in 774 (3)
 Which No Energy as Heat Is Transferred
 19-5. The Temperature of a Gas Decreases 777 (2)
 in a Reversible Adiabatic Expansion
 19-6. Work and Heat Have a Simple 779 (1)
 Molecular Interpretation
 19-7. The Enthalpy Change Is Equal to the 780 (3)
 Energy Transferred as Heat in a
 Constant-Pressure Process Involving Only
 P-V Work
 19-8. Heat Capacity Is a Path Function 783 (3)
 19-9. Relative Enthalpies Can Be 786 (1)
 Determined from Heat Capacity Data and
 Heats of Transition
 19-10. Enthalpy Changes for Chemical 787 (4)
 Equations Are Additive
 19-11. Heats of Reactions Can Be 791 (6)
 Calculated from Tabulated Heats of Formation
 19-12. The Temperature Dependence of 797 (3)
 XXX(r)H Is Given in Terms of the Heat
 Capacities of the Reactants and Products
 Problems 800 (9)
 MATHCHAPTER J / The Binomial Distribution 809 (5)
 and Stirling's Approximation
 Problems 814 (3)
 CHAPTER 20 / Entropy and the Second Law of 817 (36)
 Thermodynamics
 20-1. The Change of Energy Alone Is Not 817 (2)
 Sufficient to Determine the Direction of a
 Spontaneous Process
 20-2. Nonequilibrium Isolated Systems 819 (2)
 Evolve in a Direction That Increases Their
 Disorder
 20-3. Unlike q(rev') Entropy Is a State 821 (4)
 Function
 20-4. The Second Law of Thermodynamics 825 (4)
 States That the Entropy of an Isolated
 System Increases as a Result of a
 Spontaneous Process
 20-5. The Most Famous Equation of 829 (4)
 Statistical Thermodynamics Is S = k(B) In W
 20-6. We Must Always Devise a Reversible 833 (5)
 Process to Calculate Entropy Changes
 20-7. Thermodynamics Gives Us Insight into 838 (2)
 the Conversion of Heat into Work
 20-8. Entropy Can Be Expressed in Terms of 840 (3)
 a Partition Function
 20-9. The Molecular Formula S = k(B) In W 843 (1)
 Is Analogous to the Thermodynamic Formula
 dS = XXXq(rev)/T
 Problems 844 (9)
 CHAPTER 21 / Entropy and the Third Law of 853 (28)
 Thermodynamics
 21-1. Entropy Increases with Increasing 853 (2)
 Temperature
 21-2. The Third Law of Thermodynamics Says 855 (2)
 That the Entropy of a Perfect Crystal Is
 Zero at O K
 21-3. XXX(trs)S = XXX(trs)H/T(trs) at a 857 (1)
 Phase Transition
 21-4. The Third Law of Thermodynamics 858 (1)
 Asserts That C(p) XXX 0 as T XXX 0
 21-5. Practical Absolute Entropies Can Be 859 (2)
 Determined Calorimetrically
 21-6. Practical Absolute Entropies of 861 (4)
 Gases Can Be Calculated from Partition
 Functions
 21-7. The Values of Standard Entropies 865 (3)
 Depend upon Molecular Mass and Molecular
 Structure
 21-8. The Spectroscopic Entropies of a Few 868 (1)
 Substances Do Not Agree with the
 Calorimetric Entropies
 21-9. Standard Entropies Can Be Used to 869 (1)
 Calculate Entropy Changes of Chemical
 Reactions
 Problems 870 (11)
 CHAPTER 22 / Helmholtz and Gibbs Energies 881 (44)
 22-1. The Sign of the Helmholtz Energy 881 (3)
 Change Determines the Direction of a
 Spontaneous Process in a System at Constant
 Volume and Temperature
 22-2. The Gibbs Energy Determines the 884 (4)
 Direction of a Spontaneous Process for a
 System at Constant Pressure and Temperature
 22-3. Maxwell Relations Provide Several 888 (5)
 Useful Thermodynamic Formulas
 22-4. The Enthalpy of an Ideal Gas Is 893 (3)
 Independent of Pressure
 22-5. The Various Thermodynamic Functions 896 (3)
 Have Natural Independent Variables
 22-6. The Standard State for a Gas at Any 899 (2)
 Temperature Is the Hypothetical Ideal Gas
 at One Bar
 22-7. The Gibbs-Helmholtz Equation 901 (4)
 Describes the Temperature Dependence of the
 Gibbs Energy
 22-8. Fugacity Is a Measure of the 905 (5)
 Nonideality of a Gas
 Problems 910 (15)
 CHAPTER 23 / Phase Equilibria 925 (38)
 23-1. A Phase Diagram Summarizes the 926 (7)
 Solid-Liquid-Gas Behavior of a Substance
 23-2. The Gibbs Energy of a Substance Has 933 (2)
 a Close Connection to Its Phase Diagram
 23-3. The Chemical Potentials of a Pure 935 (6)
 Substance in Two Phases in Equilibrium Are
 Equal
 23-4. The Clausius-Clapeyron Equation 941 (4)
 Gives the Vapor Pressure of a Substance As
 a Function of Temperature
 23-5. Chemical Potential Can Be Evaluated 945 (4)
 from a Partition Function
 Problems 949 (14)
 CHAPTER 24 / Chemical Equilibrium 963 (48)
 24-1. Chemical Equilibrium Results when 963 (4)
 the Gibbs Energy Is a Minimum with Respect
 to the Extent of Reaction
 24-2. An Equilibrium Constant Is a 967 (3)
 Function of Temperature Only
 24-3. Standard Gibbs Energies of Formation 970 (2)
 Can Be Used to Calculate Equilibrium
 Constants
 24-4. A Plot of the Gibbs Energy of a 972 (2)
 Reaction Mixture Against the Extent of
 Reaction Is a Minimum at Equilibrium
 24-5. The Ratio of the Reaction Quotient 974 (2)
 to the Equilibrium Constant Determines the
 Direction in which a Reaction Will Proceed
 24-6. The Sign of XXX(r)G And Not That of 976 (1)
 XXX(r)G(XXX) Determines the Direction of
 Reaction Spontaneity
 24-7. The Variation of an Equilibrium 977 (4)
 Constant with Temperature Is Given by the
 Van't Hoff Equation
 24-8. We Can Calculate Equilibrium 981 (4)
 Constants in Terms of Partition Functions
 24-9. Molecular Partition Functions and 985 (7)
 Related Thermodynamic Data Are Extensively
 Tabulated
 24-10. Equilibrium Constants for Real 992 (2)
 Gases Are Expressed in Terms of Partial
 Fugacities
 24-11. Thermodynamic Equilibrium Constants 994 (4)
 Are Expressed in Terms of Activities
 Problems 998 (13)
 CHAPTER 25 / The Kinetic Theory of Gases 1011 (36)
 25-1. The Average Translational Kinetic 1011 (5)
 Energy of the Molecules in a Gas Is
 Directly Proportional to the Kelvin
 Temperature
 25-2. The Distribution of the Components 1016 (6)
 of Molecular Speeds Are Described by a
 Gaussian Distribution
 25-3. The Distribution of Molecular Speeds 1022 (4)
 Is Given by the Maxwell-Boltzmann
 Distribution
 25-4. The Frequency of Collisions That a 1026 (3)
 Gas Makes with a Wall Is Proportional to
 Its Number Density and to the Average
 Molecular Speed
 25-5. The Maxwell-Boltzmann Distribution 1029 (2)
 Has Been Verified Experimentally
 25-6. The Mean Free Path Is the Average 1031 (6)
 Distance a Molecule Travels Between
 Collisions
 25-7. The Rate of a Gas-Phase Chemical 1037 (2)
 Reaction Depends Upon the Rate of
 Collisions in which the Relative Kinetic
 Energy Exceeds Some Critical Value
 Problems 1039 (8)
 CHAPTER 26 / Chemical Kinetics I: Rate Laws 1047 (44)
 26-1. The Time Dependence of a Chemical 1048 (3)
 Reaction Is Described by a Rate Law
 26-2. Rate Laws Must Be Determined 1051 (3)
 Experimentally
 26-3. First-Order Reactions Show an 1054 (4)
 Exponential Decay of Reactant Concentration
 with Time
 26-4. The Rate Laws for Different Reaction 1058 (4)
 Orders Predict Different Behaviors for the
 Time-Dependent Reactant Concentration
 26-5. Reactions Can Also Be Reversible 1062 (1)
 26-6. The Rate Constants of a Reversible 1062 (9)
 Reaction Can Be Determined Using Relaxation
 Methods
 26-7. Rate Constants Are Usually Strongly 1071 (4)
 Temperature Dependent
 26-8. Transition-State Theory Can Be Used 1075 (4)
 to Estimate Reaction Rate Constants
 Problems 1079 (12)
 CHAPTER 27 / Chemical Kinetics II: Reaction 1091 (48)
 Mechanisms
 27-1. A Mechanism is a Sequence of 1092 (1)
 Single-Step Chemical Reactions called
 Elementary Reactions
 27-2. The Principle of Detailed Balance 1093 (3)
 States That when a Complex Reaction is at
 Equilibrium, the Rate of the Forward
 Process Is Equal to the Rate of the Reverse
 Process for Each and Every Step of the
 Reaction Mechanism
 27-3. When Are Consecutive and Single-Step 1196
 Reactions Distinguishable?
 27-4. The Steady-State Approximation 1101 (2)
 Simplifies Rate expressions by Assuming
 That d[I]/dt = 0, where I Is a Reaction
 Intermediate
 27-5. The Rate Law for a Complex Reaction 1103 (5)
 Does Not Imply a Unique Mechanism
 27-6. The Lindemann Mechanism Explains How 1108 (5)
 Unimolecular Reactions Occur
 27-7. Some Reaction Mechanisms Involve 1113 (3)
 Chain Reactions
 27-8. A Catalyst Affects the Mechanism and 1116 (3)
 Activation Energy of a Chemical Reaction
 27-9. The Michaelis-Menten Mechanism Is a 1119 (4)
 Reaction Mechanism for Enzyme Catalysis
 Problems 1123 (16)
 CHAPTER 28 / Gas-Phase Reaction Dynamics 1139 (42)
 28-1. The Rate of a Bimolecular Gas-Phase 1139 (5)
 Reaction Can Be Calculated Using
 Hard-Sphere Collision Theory and an
 Energy-Dependent Reaction Cross Section
 28-2. A Reaction Cross Section Depends 1144 (3)
 upon the Impact Parameter
 28-3. The Rate Constant for a Gas-Phase 1147 (1)
 Chemical Reaction May Depend on the
 Orientations of the Colliding Molecules
 28-4. The Internal Energy of the Reactants 1148 (1)
 Can Affect the Cross Section of a Reaction
 28-5. A Reactive Collision Can Be 1149 (5)
 Described in a Center-of-Mass Coordinate
 System
 28-6. Reactive Collisions Can Be Studie


¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ ´äº¯
ÀÌ »óÇ°¿¡ ´ëÇÑ Áú¹®ÀÌ ¾ÆÁ÷ ¾ø½À´Ï´Ù.
±Ã±ÝÇϽŠ»çÇ×Àº ÀÌ°÷¿¡ Áú¹®ÇÏ¿© ÁֽʽÿÀ.
 
* ÀÌ »óÇ°¿¡ ´ëÇÑ ±Ã±ÝÇÑ »çÇ×ÀÌ ÀÖÀ¸½Å ºÐÀº Áú¹®ÇØ ÁֽʽÿÀ.
ȸ»ç¼Ò°³ | ¼­ºñ½ºÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸ Ãë±Þ¹æħ
¼­¿ï½Ã °ü¾Ç±¸ ½Å¿øµ¿ 1580-18 2Ãþ / ÀüÈ­ : 010-4004-14393 / Æѽº : 02-811-1256 / ¿î¿µÀÚ : ´Þ¸¶ / °³ÀÎÁ¤º¸°ü¸®Ã¥ÀÓÀÚ : ÀÓ¿µÅÃ
»ç¾÷ÀÚ µî·Ï¹øÈ£ : 108-91-53191 / ´ëÇ¥ : ÀÓ¿µÅà / Åë½ÅÆǸž÷½Å°í¹øÈ£ : Á¦ OO±¸ - 123È£
Copyright © 2009 ´Þ¸¶¼­Á¡. All Rights Reserved.