ÇöÀçÀ§Ä¡ : Home > ´ëÇÐÀü°ø¼­Àû > ÀÚ¿¬°úÇÐ/¼öÇÐ

 
Nanomaterials for Biosensors (Hardcover)
    ¡¤ ÁöÀºÀÌ | ¿Å±äÀÌ:Kumar|Challa S. S. R.
    ¡¤ ÃâÆÇ»ç:JohnWiley&SonsInc
    ¡¤ ÃâÆdz⵵:20070305
    ¡¤ Ã¥»óÅÂ:ÃÖ»ó±Þ / Àç°íµµ¼­ / ¾çÀ庻 / 408ÂÊ / 177*245mm / ¾ð¾î : English / ±¹°¡ : µ¶ÀÏ / 921g / ISBN : 9783527313884(3527313885)
    ¡¤ ISBN:9783527313884
    ¡¤ ½ÃÁß°¡°Ý : ¿ø
    ¡¤ ÆǸŰ¡°Ý : ¿ø
    ¡¤ Æ÷ ÀÎ Æ® : Á¡
    ¡¤ ¼ö ·® : °³

This volume combines the chemistry and materials science of nanomaterials and biomolecules with their detection strategies, sensor physics and device engineering. In so doing, it covers the important types of nanomaterials for sensory applications, namely carbon nanotubes, fullerenes, fluorescent and biological molecules, nanorods, nanowires and nanoparticles, dendrimers, and nanostructured silicon. It also illustrates a wide range of sensing principles, including fluorescence, nanocantilever oscillators, electrochemical detection, antibody-antigen interactions, and magnetic detection.


¸ñÂ÷

Preface xv
List of Authors xix
Biosensing using Carbon Nanotube Field-effect Transistors 1(26)
Padmakar D. Kichambare
Alexander Star Overview
Overview 1(1)
Introduction 1(2)
Carbon Nanotube Field-effect Transistors (NTFETs) 3(6)
Carbon Nanotubes 3(1)
Nanotube Synthesis 4(2)
Fabrication of NTFETs 6(3)
Sensor Applications of NTFETs 9(12)
Sensitivity of NTFETs to Chemical Environment 9(3)
Bioconjugates of Carbon Nanotubes 12(2)
Protein Detection 14(1)
Detection of Antibody-Antigen Interactions 15(2)
DNA Detection 17(2)
Enzymatic Reactions 19(1)
Glucose Detection 20(1)
Conclusion and Outlook 21(6)
References 21(6)
Carbon Nanotube-based Sensor 27(29)
Jian-Shan Ye
Fwu-Shan Sheu
Overview 27(1)
Introduction of Carbon Nanotubes 27(2)
Growth of Carbon Nanotubes 29(1)
Methods to Prepare CNTs-based Sensors and Biosensors 29(5)
Individual MWCNTs as Nanoelectrodes 29(1)
Randomly Distributed CNT Electrodes 30(1)
Well-aligned Carbon Nanotube Electrodes 30(1)
Carbon Nanotube Paste Electrodes 31(1)
Screen-printing Carbon Nanotubes 32(1)
Self-assembly of Carbon Nanotubes 33(1)
Carbon Nanotube-packaged Microelectrodes 34(1)
Application of CNTs-based Electrochemical Sensors and Biosensors 34(5)
Electrochemical and Electrocatalytical Properties of Carbon Nanotubes 34(3)
CNTs-based Electrochemical Biosensors 37(2)
Functionalization of CNTs 39(9)
Biological Functionalization of CNTs 39(1)
Self-assembly of Surfactant and Lipid Molecules at CNTs 39(3)
Electrochemical Functionalization of CNTs 42(1)
Electrochemical Application of Functionalized CNTs 43(1)
Application of Lipid-CNT Nanomaterials in Electrochemical Sensors 43(1)
Achieving direct Electron Transfer to Redox Proteins by Functional CNTs 44(1)
Biomolecule-functionalized CNTs for Electrochemical Sensors and Biosensors 45(3)
Conclusions and Future Prospects 48(8)
Acknowledgments 49(1)
References 49(7)
Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development 56(45)
Jun Wang
Guodong Liu
Yuehe Lin
Introduction 56(1)
Carbon Nanotubes in Biosensor Development 57(27)
Preparation and Purification of CNTs 58(2)
Construction of CNT-based Biosensors 60(1)
Dispersion and Stabilization by Oxidative Acids 60(1)
Dispersion by Surfactant Interaction 61(1)
Polymer-assisted Solubilization 61(1)
CNT Adsorption on the Transducer Substrate 61(1)
Surface Functionalization of CNTs 62(1)
Composite Entrapment and CNTs Bulky Electrode Material 63(3)
More Sophisticated Surface Tailoring Based on Combination of Co-adsorption, Integration, Prohibition, Spacing, Linkage, Sandwich, Tagging, and other Anchoring Approaches 66(3)
CNT-based Electrochemical Biosensors 69(1)
Direct Electrochemistry of Biomolecules on Carbon Nanotubes 69(3)
Enzyme/CNTs Biosensors 72(1)
DNA and Protein Biosensors 73(1)
Immunosensors 74(1)
Flow-injection Analysis 75(1)
Carbon Nanotube Array-based Biosensors 76(4)
Chemiluminescence 80(1)
Field-effect Transistor and Bioelectronics 81(3)
Nanowires in Biosensor Development 84(5)
Silicon Nanowire-based Biosensors 84(2)
Conducting Polymer Nanowire-based Biosensors 86(3)
Metal Oxide Nanowire-based Biosensors 89(1)
Nanocantilevers for Biosensors 89(1)
Summary 90(11)
Acknowledgments 91(1)
Glossary 91(1)
Abbreviations 92(1)
References 93(8)
Fullerene-based Electrochemical Detection Methods for Biosensing 101(22)
Nikos Chaniotakis
Introduction 101(1)
Aims of the Chapter 101(2)
Electrochemical Biosensing 103(2)
Making a Biosensor 105(1)
Evolution of Biosensors 105(1)
Mediation Process in Biosensors 106(3)
Case A: Non-mediated Biosensor 107(1)
Case B: Mediated Biosensor 108(1)
Fullerenes 109(5)
Synthesis of Fullerenes 109(1)
Biofunctionalization of Fullerenes 109(4)
Electrochemistry of Fullerenes 113(1)
Fullerene-mediated Biosensing 114(4)
Conclusions 118(5)
References 118(5)
Optical Biosensing Based on Metal and Semiconductor Colloidal Nanocrystals 123(52)
Roberto Comparelli
Maria Lucia Curri
Pantaleo Davide Cozzoli
Marinella Striccoli
Overview 123(1)
Introduction 123(4)
Colloidal Nanocrystals 127(7)
Size-dependent Optical Properties 127(4)
Chemical Synthesis 131(3)
Nanocrystal Functionalization for Biosensing 134(5)
Surface Capping Exchange 135(2)
Coating with a Silica Shell 137(1)
Surface Modification through Hydrophobic Interactions 137(2)
Optical Techniques 139(13)
Colorimetric Tests 139(1)
Fluorescence 139(2)
Fluorescence Resonance Energy Transfer 141(1)
Fluorescence Lifetime 142(3)
Multiphoton Techniques 145(1)
Metal-enhanced Fluorescence 145(1)
Surface Plasmon Resonance 146(3)
Surface-enhanced Resonance Spectroscopy 149(3)
Advantages and Disadvantages of Nanocrystals in Optical Detection 152(1)
Applications 153(9)
Biosensing with Semiconductor Nanocrystals 153(4)
Biosensing with Metallic Nanoparticles 157(5)
Towards Marketing 162(2)
Conclusions 164(11)
References 164(11)
Quantum Dot-based Nanobiohybrids for Fluorescent Detection of Molecular and Cellular Biological Targets 175(33)
Zhivko Zhelev
Rumiana Bakalova
Hideki Ohba
Yoshinobu Baba
Introduction 175(1)
Quantum Dots - Basic Principles of Design and Synthesis, Optical Properties, and Advantages over Classical Fluorophores 176(5)
Basic Principles of Design and Synthesis of Quantum Dots 176(2)
Optical and Chemical Properties - Advantages Compared with Classical Fluorophores 178(3)
Quahtum Dots for Fluorescent Labeling and Imaging 181(10)
Structure of Quantum Dot Nanobiohybrids for Fluorescent Microscopic Imaging 181(1)
Quantum Dots for Fluorescent Cell Imaging 182(2)
Quantum Dots for Fluorescent Deep-tissue Imaging In Vivo 184(7)
Potential of Quantum Dots for Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) 191(1)
Quantum Dots for Immunoblot Analysis with Fluorescent Detection 191(5)
Basic Principles of Classical and QD-based Immunoblot Analyses 192(2)
QD-based Immunoblot Analysis of ``tracer'' Proteins - Privileges over Classical Immunoblot Analysis 194(2)
Quantum Dots for FRET Analyses, Time-resolved Fluorimetry, and Development of Optical Recognition-based Biosensors 196(5)
Quantum Dots for FRET-based Bioanalyses 196(1)
Quantum Dots for Time-resolved Fluorimetry 197(1)
Quantum Dots for development of New Generation Optical Recognitionbased Biosensors 197(4)
Quantum Dots as New Fluorescent Standards for the Thin Calibration of Fluorescent Instrumentation 201(7)
References 201(7)
Detection of Biological Materials by Gold Nano-biosensor-based Electrochemical Method 208(32)
Juan Jiang
Manju Basu
Sara Seggerson
Albert Miller
Michael Pugia
Subhash Basu
Introduction 208(1)
Template Synthesis of Gold Nano-wire Arrays for Biosensor Applications 209(11)
General Template Synthesis 209(3)
Template Formation 212(2)
Fabrication of Gold Nano-wire Arrays (GNW) 214(6)
Synthesis of a Linker and its Attachment to Gold Posts of GNW followed by Binding to Specific Antibodies 220(4)
Development of Electrochemical Nano-biosensor for Bacteria Detection 224(11)
General Detections for Biosensors 224(2)
Experimental Conditions 226(1)
Electrochemical Impedance (EIS) Detection of E. coli 227(1)
EIS on Flat Gold Surfaces 228(2)
EIS on GNW 230(1)
EIS on GNW with A12O3 230(3)
Summary of EIS Detection of E. coli Bacteria 233(2)
Conclusions 235(5)
Acknowledgments 235(1)
References 236(4)
Dendrimer-based Electrochemical Detection Methods 240(19)
Hak-Sung Kim
Hyun C. Yoon
Overview 240(1)
Introduction 240(2)
Background 240(1)
Dendrimers as a new Constituent of Biocomposite Structures 241(1)
Applications for Biosensors 242(14)
Bioelectrocatalytic Enzyme Electrodes based on LBL (layer-by-layer) Assembly with Dendrimers 243(1)
Bioelectrocatalytic Immunosensors based on the Dendrimer-associated SAMs 244(1)
Affinity Recognition Surface based on the Dendrimer-associated SAMs 244(4)
Electrochemical Signaling from Affinity Recognition Reactions 248(5)
Protein Micropatterning on Sensor Surfaces for Multiplexed Analysis 253(3)
Conclusions 256(3)
Acknowledgments 256(1)
References 256(3)
Coordinated Biosensors: Integrated Systems for Ultrasensitive Detection of Biomarkers 259(19)
Joanne I. Yeh
Overview 259(1)
Introduction 260(2)
Elements of a Nanobiosensor 262(3)
Biomolecular Components 262(1)
Nanoparticles 263(1)
Nanoelectrodes 264(1)
Coordinated Biosensors 265(7)
Biomolecular Conduits: Signal Transducing Mediators 265(2)
NADH Peroxidase: the Biocatalytic Element 267(3)
Undecagold Nanoparticle: Role in Alignment and Directing Electron Flow 270(1)
Integrated Signals 270(2)
Conclusion 272(6)
Acknowledgments 274(1)
References 274(4)
Protein-based Biosensors using Nanomaterials 278(33)
Cenxi Li
Introduction 278(1)
Metal Nanoparticles 279(6)
Gold Nanoparticles 279(5)
Silver Nanoparticles 284(1)
Other Metal Nanomaterials 285(1)
Metallic Oxide Nanoparticles 285(1)
Carbon Nanotubes 286(6)
Nanocomposite Materials 292(1)
Nanoparticles with Special Functions 293(2)
Semiconductor Nanoparticles 293(2)
Magnetic Nanoparticles 295(1)
Other Nanomaterials 295(2)
Conclusion 297(14)
References 297(14)
Biomimetic Nanosensors 311(26)
Raz Jelinek
Sofiya Kolusheva
Introduction 311(1)
Nanostructures in Biosensor Design 312(5)
Nanosensors for Probing Biological and Cellular Systems 317(6)
Biological Components in Nanosensors 323(4)
Nano-biotechnology and Biomedical Diagnosis 327(2)
Conclusions and Future Directions 329(8)
Abbreviations 330(1)
References 330(7)
Reagentless Biosensors Based on Nanoparticles 337(31)
David E. Benson
Introduction 337(2)
Surface Dielectric Enhancement 339(7)
Gold Nanoparticle Enhanced Surface Plasmon Resonance 340(3)
Carbon Nanotube and Silicon Nanowire Enhanced Conductivity 343(3)
Advantages and Caveats 346(1)
Catalytic Activation 346(5)
Electrocatalytic Detection 347(2)
Catalytically Enabled Optical and Magnetic Detection 349(1)
Advantages and Caveats 350(1)
Biomolecule Conformational Modulated Effects 351(10)
Biosensors Based on DNA Conformation Changes 352(3)
Biosensors Based on Protein Conformation Changes 355(6)
Conclusion 361(7)
Acknowledgments 362(1)
References 362(6)
Pico/Nanoliter Chamber Array Chips for Single-cell, DNA and Protein Analyses 368(30)
Shohei Yamamura
Ramachandra Rao Sathuluri
Eiichi Tamiya
Introduction 368(1)
Multiplexed Polymerase Chain Reaction from A Single Copy DNA using Nanoliter-volume Microchamber Array 369(9)
PCR Microchamber Array Chip System 371(1)
Microchamber Array Chip Fabrication 371(1)
Sample Loading with a Nanoliter Dispenser 372(1)
Multiplexed Detection of Different Target DNA on a Single Chip 373(3)
On-chip Quantification of Amplified DNA 376(2)
On-chip Cell-free Protein Synthesis using A Picoliter Chamber Array 378(6)
Cell-free Protein Synthesis Chip Fabrication 379(2)
Cell-free Protein Synthesis using a Microchamber Array 381(3)
High-throughput Single-cell Analysis System using Pico-liter Microarray 384(8)
Single-cell Microarray Chip Fabrication 386(2)
Pico-liter Microarray for Single-cell Studies 388(1)
Single-cell Microarray System for Analysis of Antigen-specific Single B-cells 389(3)
Conclusions 392(6)
Acknowledgments 393(1)
References 393(5)
Index 398


¹øÈ£ Á¦¸ñ ÀÛ¼ºÀÚ ÀÛ¼ºÀÏ ´äº¯
ÀÌ »óÇ°¿¡ ´ëÇÑ Áú¹®ÀÌ ¾ÆÁ÷ ¾ø½À´Ï´Ù.
±Ã±ÝÇϽŠ»çÇ×Àº ÀÌ°÷¿¡ Áú¹®ÇÏ¿© ÁֽʽÿÀ.
 
* ÀÌ »óÇ°¿¡ ´ëÇÑ ±Ã±ÝÇÑ »çÇ×ÀÌ ÀÖÀ¸½Å ºÐÀº Áú¹®ÇØ ÁֽʽÿÀ.
ȸ»ç¼Ò°³ | ¼­ºñ½ºÀÌ¿ë¾à°ü | °³ÀÎÁ¤º¸ Ãë±Þ¹æħ
¼­¿ï½Ã °ü¾Ç±¸ ½Å¿øµ¿ 1580-18 2Ãþ / ÀüÈ­ : 010-4004-14393 / Æѽº : 02-811-1256 / ¿î¿µÀÚ : ´Þ¸¶ / °³ÀÎÁ¤º¸°ü¸®Ã¥ÀÓÀÚ : ÀÓ¿µÅÃ
»ç¾÷ÀÚ µî·Ï¹øÈ£ : 108-91-53191 / ´ëÇ¥ : ÀÓ¿µÅà / Åë½ÅÆǸž÷½Å°í¹øÈ£ : Á¦ OO±¸ - 123È£
Copyright © 2009 ´Þ¸¶¼­Á¡. All Rights Reserved.